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Abstract

Graph anomaly detection (GAD) has become a critical research area, with suc-1

cessful applications in financial fraud and telecommunications. Traditional Graph2

Neural Networks (GNNs) face significant challenges: at the topology level, they3

suffer from over-smoothing that averages out anomalous signals; at the feature4

level, discriminative models struggle when fraudulent nodes obfuscate their fea-5

tures to evade detection. In this paper, we propose a Conditional Graph Anomaly6

Diffusion Model (CGADM) that addresses these issues through the iterative refine-7

ment and denoising reconstruction properties of diffusion models. Our approach8

incorporates a prior-guided diffusion process that injects a pre-trained conditional9

anomaly estimator into both forward and reverse diffusion chains, enabling more10

accurate anomaly detection. For computational efficiency on large-scale graphs,11

we introduce a prior confidence-aware mechanism that adaptively determines the12

number of reverse denoising steps based on prior confidence. Experimental results13

on benchmark datasets demonstrate that CGADM achieves state-of-the-art per-14

formance while maintaining significant computational advantages for large-scale15

graph applications.16

1 Introduction17

Graph anomaly detection (GAD) has become a critical research area, with successful applications18

in financial fraud detection [Huang et al., 2022, Dou et al., 2020] and telecommunication fraud19

detection [Yang et al., 2021]. Graph Neural Networks (GNNs) have gained prominence for GAD20

due to their ability to model topological structures through message passing, which aggregates21

neighborhood information to generate node representations that are then classified as normal or22

anomalous [Kipf and Welling, 2017, Hamilton et al., 2017, Velickovic et al., 2018, Xu et al., 2019].23

However, discriminative models based on feature aggregation exhibit inherent shortcomings.24

1. From topology-level perspective, vanilla GNNs suffer from over-smoothing, acting as low-pass25

filters that average anomalous representations, making them less distinguishable. As illustrated in26

the left part of Figure 1, fraudulent nodes exploit this by strategically connecting with carefully27

selected neighbors to disguise their anomalous patterns. For instance, in money laundering trans-28

actions, fraudsters can distribute transactions or create numerous interactions with bot accounts to29

blend in with the crowd.30

2. From feature-level perspective, discriminative models detect anomalies by learning decision31

boundaries between normal and anomalous points. As fraudulent nodes evolve and obfuscate their32

features, they can cross these boundaries, evading detection.33

Diffusion models (DMs) can address these limitations through their two key properties: iterative34

refinement and denoising reconstruction. Iterative refinement applies GNN-based denoisers that35

incorporate neighborhood information while preserving high-frequency anomaly signals via residual36
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Figure 1: An illustration of Generative Graph Anomaly Detection.

propagation, preventing over-smoothing. Meanwhile, denoising reconstruction recovers underlying37

anomaly patterns even when nodes disguise their features. (See Appendix S for theoretical analysis).38

Applying DMs for GAD introduces two major challenges, as shown in right part of Figure 1:39

Effectiveness. Traditional denoising models have primarily focused on unconditional generative40

modeling [Song and Ermon, 2019, Song et al., 2021b, Ramesh et al., 2022]. While many tasks41

in the image or video domain have introduced guided-diffusion models to generate photo-realistic42

images that match the semantic meanings or content of the label, text, or corrupted images, most43

work in the graph domain has started generating from white noise or empty or fully connected44

graphs. However, for anomaly detection on graphs, due to various deceptive and obfuscating tactics45

employed by anomalous nodes, directly recovering the underlying true distribution from a random46

noise distribution may not yield satisfactory results.47

Efficiency. The reverse process of DMs requires numerous iterative denoising samplings [Yi et al.,48

2023, Chen et al., 2023]. Existing graph diffusion models utilize a GNN-based encoder to update all49

nodes at time step t during each iterative refinement to obtain the nodes at time step t − 1. While50

this approach is feasible for standard graph generation tasks, it becomes computationally prohibitive51

for anomaly detection tasks on extremely large graphs. Performing such iterative operations across52

potentially millions of nodes in the entire graph can significantly increase computational overhead,53

thereby affecting the practical applicability of the algorithm.54

We propose a novel Conditional Graph Anomaly Diffusion Model (CGADM) for graph anomaly55

detection to address the aforementioned challenges synergistically. Unlike existing diffusion-based56

approaches that performing data augmentation to address class imbalance, CGADM directly generates57

anomaly judgments through joint distribution modeling, representing a fundamentally new model-58

centric paradigm for GAD.59

To tackle the effectiveness issue, we propose a prior-guided diffusion process, which injects a pre-60

trained conditional anomaly estimator into both the forward and reverse diffusion chains. This61

approach constructs a denoising diffusion probabilistic model for more accurate anomaly detection.62

Specifically, we introduce a lightweight model to estimate an anomaly prior for each node, serving as63

the endpoint for our forward noise addition process and the starting point for our reverse denoising64

process. Based on this new probabilistic model, we redesign the probability model and optimization65

objective of our CGADM.66

To tackle the efficiency issue, we build on the intuition that normal nodes are generally farther from67

the decision boundary compared to anomalous nodes that have narrowly evaded detection. Therefore,68

in the reverse process, we introduce a prior confidence-aware mechanism to adaptively determine the69

reverse time step for each node. Nodes with high confidence in their anomaly prior require fewer time70

steps, while those with lower confidence require more sampling time steps. This approach not only71

accurately estimates the anomaly probability for each node but also reduces the number of predictions72

in the reverse process, thereby decreasing computational time.73

Through experiments on benchmarks for GAD, CGADM achieves state-of-the-art results. Additional74

studies confirm the computational advantages of our framework.75

2



2 Related Work76

2.1 Graph Anomaly Detection77

Graph anomaly detection [Duan et al., 2023] aims to identify nodes that deviate significantly from78

most other nodes. Various GNN-based methods have been proposed to address this challenge.79

Early approaches like FdGars [Wang et al., 2019] and CARE-GNN [Dou et al., 2020] focused on80

user classification and neighbor aggregation respectively. Follow-up works tackled specific issues:81

FRAUDRE [Zhang et al., 2021] and PC-GNN [Liu et al., 2021] addressed class imbalance, while82

AMNet [Chai et al., 2022], BWGNN [Tang et al., 2022], and GHRN [Gao et al., 2023b] improved83

feature handling through frequency-based approaches.84

Recent advancements have explored novel directions: GDN [Gao et al., 2023a] addressed structural85

distribution shifts, SEC-GFD [Xu et al., 2024] handled heterophily via spectral filtering, GGAD [Qiao86

et al., 2024] generated pseudo-anomalies, and ADA-GAD [He et al., 2024] mitigated anomaly87

overfitting. Unlike these approaches, our CGADM introduces a generative diffusion framework that88

models the joint anomaly distribution over the graph, enabling holistic detection without relying on89

augmentation strategies.90

However, existing methods rely on discriminative models with feature aggregation, making them91

vulnerable to over-smoothing and camouflage tactics. Our approach departs from this paradigm by92

proposing a generative model that jointly models the anomaly distribution of each node on the graph.93

2.2 Diffusion Model94

Denoising diffusion probabilistic models (DDPMs) [Ho et al., 2020, Song et al., 2021a], or simply95

diffusion models, are a class of probabilistic generative models that transform noise into data samples,96

hence primarily used for generative tasks [Dhariwal and Nichol, 2021, Rombach et al., 2022].97

Diffusion-based generative models have demonstrated strong capabilities in generating high-quality98

graphs [Niu et al., 2020, Liu et al., 2019, Jo et al., 2022, Haefeli et al., 2022, Chen et al., 2022,99

Vignac et al., 2023, Kong et al., 2023]. Haefeli et al. [2022] designed a model limited to graphs100

without attributes and similarly observed the benefits of discrete diffusion for graph generation.101

Previous graph diffusion models were based on Gaussian noise. Niu et al. [2020] generated adjacency102

matrices indicating the presence of edges by thresholding continuous values, while Jo et al. [2022]103

extended this model to handle node and edge attributes. Digress [Vignac et al., 2023] was the first104

to propose a discrete diffusion model for graphs. Regarding the severe label imbalance problem105

in anomaly detection, many existing anomaly detection methods improve datasets by generating106

synthetic anomalies [Chen et al., 2020b, Ding et al., 2020], creating a more balanced environment.107

We approaches from a different angle, using diffusion models to model the joint distribution of108

anomalies on large-scale graphs for more precise and robust anomaly detection.109

3 Preliminaries110

Attributed Graph. An attributed graph is denoted as G = {V, E ,X}, where V = {v1, v2, . . . , vN}111

represents the set of all N nodes on graph G, and E = {eij |vi, vj ∈ V} signifies the set of edges,112

indicating the existence of an edge between nodes vi and vj . For each node vi, there exists a d-113

dimensional feature vector, xi ∈ Rd. The feature vectors of all nodes form the feature matrix of the114

graph, denoted as X = [x1, x2, . . . , xN ] ∈ RN×d. An adjacency matrix A records the relationships115

between nodes on graph G. Each entry Aij = 1 if there exists eij ∈ E , otherwise, Aij = 0.116

Anomaly Detection on Graph. Consider two disjoint subsets of V , namely Va and Vn, such that117

Va ∩ Vn = ∅. Va contains all nodes labeled as anomalous, and Vn comprises all normal nodes.118

The goal of graph anomaly detection (GAD) is to compute anomaly probability p(y|E ,X) of the119

unlabeled nodes with partial node labels. Please refer Appendix G for challenges of GAD.120

Diffusion Probabilistic Model. An efficient diffusion model must satisfy three key properties: (1)121

The conditional distribution q(zt|x) should possess a closed-form equation to circumvent the recursive122

application of noise during training. (2) The posterior q(zt−1|zt, x) should also have a closed-form123

solution to serve as the neural network’s target. (3) The limiting distribution q∞ = limT→∞ q(zT |x)124

should be independent of x, enabling its use as a prior distribution for inference. These properties are125
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all met when the noise follows a Gaussian distribution. The common steps in the diffusion model are126

shown in Appendix C.127

4 Methodology128

We formulate the GAD problem as a task of modeling the joint conditional distribution of anomalies129

on the graph. This prior distribution serves as the endpoint for adding noise and the starting point130

for inference. CGADM gradually transforms the ground truth anomaly distribution into the prior131

distribution instead of the conventional Guassian distribution. By utilizing a topological-guided132

denoising network, CGADM is capable of simultaneously modeling the topological information133

and features of nodes to iteratively recover the ground truth. To expedite the inference process, we134

introduce a prior-aware strided sampling strategy. To enable inference over arbitrary numbers of135

steps, we propose a conditional non-Markovian reverse process.136

4.1 Diffuse Ground Truth to Prior137

In light of Section 3, we propose to cast the graph anomaly detection problem as a generative task.138

We set y0 as the anomaly ground truth and y1:T as the intermediate predictions generated in the139

forward process of the diffusion model. The objective of graph anomaly detection then becomes the140

maximization of the log-likelihood p(y0|E ,X). Consequently, Equation 2 can be restructured as the141

following Conditional Evidence Lower Bound (CELBO) to serve as our new optimization target:142

log pθ(y0|E ,X) = log

∫
pθ(y0:T |E ,X)dy1:T ≥ Eq(y1:T |y0,E,X)

[
log

pθ(y0:T |E ,X)

q(y1:T |y0, E ,X)

]
, (1)

where pθ(y0:T |E ,X) is the joint distribution of the target and the predictions under the denoising143

model parameters θ, and q(y1:T |y0, E ,X) is the conditional distribution of forward process given144

the ground truth and the input data.145

By substituting Equation 1 into Equation 17, we can express our optimization objective as follows:146

L = Eq [− log pθ(y0|y1, E ,X)] + Eq [DKL (q(yT |y0, E ,X)∥ p(yT |E ,X)]

+

T∑
t=2

Eq [DKL (q(yt−1|yt,y0, E ,X)∥ pθ(yt−1|yt, E ,X)] .
(2)

Following the conventions of Denoising Diffusion Probabilistic Models (DDPM) [Ho et al., 2020],147

we respectively name the first, second, and third terms of the above objective function as the148

reconstruction term Lrecon, the prior matching term Lprior, and the consistency term Lcon.149

To avoid our CGADM recovering the joint anomaly distribution starting from random noise [Han150

et al., 2022b], we modify the endpoint of the diffusion process from the conventional Guassian151

distribution N(0, I) to:152

p(yT |E ,X) = N(gϕ(E ,X), I), (3)
where gϕ(E ,X) is a parameterized network pretrained on training set D to estimate the mean value of153

the final normal distribution. By doing so, we effectively utilize the condition E ,X in the distribution154

p(yT |E ,X) to help us establish a prior understanding of the joint anomaly distribution.155

The prior matching term Lprior is a parameter-free term. In order to make it close to zero, we need to156

adjust the forward process in combination with the calculation of the prior gϕ(E ,X). Following the157

practice of Pandey et al. [2022], we define the noise-adding process at each step as follows:158

q(yt|yt−1, gϕ(E ,X)) = N (yt;
√

1− βtyt−1 + (1−
√

1− βt)gϕ(E ,X), βtI), (4)

where N represents the Gaussian Distribution, and βt ∈ (0, 1) regulates the noise scales added at159

step t. This noise-adding step allows for a closed-form sampling distribution at any arbitrary timestep160

t, according to the additivity of the Gaussian distribution:161

q(yt|y0, E ,X) = q(yt|y0, gϕ(E ,X)) = N (yt;
√
ᾱty0 + (1−

√
ᾱt)gϕ(E ,X), (1− ᾱt)I), (5)

where αt := 1− βt and ᾱt :=
∏

t αt. This sampling distribution enables Lprior to be close to zero162

when t = T . Intuitively, the noise-adding process defined by Equation 5 can be interpreted as an163

interpolation between the true data y0 and the estimated prior gϕ(E ,X), which exhibits a gradual164

transition from the true data towards the estimated prior over the course of the forward process.165

4



With the above formulation, we can derive a tractable posterior that serves as the target for our166

denoising network. It can be expressed as follows:167

q(yt−1|yt,y0, E ,X) = q(yt−1|yt,y0, gϕ(E ,X)) = N
(
yt−1; µ̃(yt,y0, gϕ(E ,X)), β̃tI

)
, (6)

where µ̃ := γ0y0 + γ1yt + γ2gϕ(E ,X) and β̃t :=
1−ᾱt−1

1−ᾱt
βt, with:168

γ0 =
√

βtᾱt−1, γ1 =
(1− ᾱt−1)

√
αt

(αt − 1)(
√
αt +

√
ᾱt−1)

, γ2 =
1

1− ᾱt
. (7)

For detailed derivation, please refer to Appendix D.169

4.2 Topological-guided Denoising Network170

According to Equation 4, we define pθ(yt−1|yt, E ,X) as N(yt−1;µθ(yt, t, E ,X),Σθ(yt, t, E ,X))171

for 1 < t ≤ T . Following the setup of DDPM, we set Σθ(yt, t, E ,X) = σ2
t I to untrained time-172

dependent constants and set σ2
t = β̃t. For the parameterization, we may select:173

µθ(yt, t, E ,X) =
1√
αt

(yt −
βt√
1− ᾱt

ϵθ(yt, t, E ,X)), (8)

where ϵθ is a parameterized network predicting the forward diffusion noise ϵ sampled for anomaly174

scores yt.175

An anomalous node is typically strongly correlated not only with its node features but also with176

the its local topological structure. The bias brought about by a few anomalous nodes is high-177

frequency information in the frequency domain. Most existing GNNs act as low-pass filters and178

cannot effectively capture the high-frequency signals carried by anomalous nodes. Borrowing the179

idea from GCNII [Chen et al., 2020a], we adopt a residual propagation mechanism that prevents the180

high-frequency information of nodes from being overlooked due to over-smoothing in the multi-layer181

graph convolution process:182

hl
v = σ

Wl−1

hl−1
v − 1

|N (v)|
∑

u∈N (v)

hl−1
u

 , hfinal = AGG(h0
v,h

1
v, . . . ,h

L
v ), (9)

where L is the number of graph convolution layers and AGG(·) can be a simple aggregation183

function such as summation or concatenation. With this message-passing mechanism, we define our184

topological-aware denoising network as ϵθ(yt, t, E ,X) = ϵθ(yt, t,H
final). For more details about185

the denoising network, please refer to Appendix I.186

To execute our training, we sample yt according to Equation 5. Through the reparameterization trick,187

we can derive:188

yt =
√
ᾱty0 + (1−

√
ᾱt)gϕ(E ,X) +

√
1− ᾱtϵ. (10)

We simplify Lrecon and Lcon to obtain the final loss L:189

Lϵ = ||ϵ− ϵθ(
√
ᾱty0 + (1−

√
ᾱt)gϕ(E ,X) +

√
1− ᾱtϵ, t, E ,X)||2 (11)

Where elements in t is uniformly distributed between 1 and T . The case of t = 1 corresponds to190

Lrecon. Similar to DDPM, the cases where t > 1 correspond to an unweighted version of Lcon. The191

whole process of training is shown in Appendix J.192

4.3 Inference for Anomaly Detection193

For image synthesis, DMs typically draw random Gaussian noise for the reverse process, with194

generation guided by pre-trained classifiers or other signals. However, for graph anomaly detection,195

generating directly from pure noise may not yield accurate results due to the deceptive tactics196

employed by anomalous nodes.197

We propose an inference strategy that aligns with CGADM training, starting from a prior-guided198

initialization yT ∼ N (gϕ(E ,X), I) rather than standard Gaussian noise. At each step t, we first199

estimate the denoised anomaly score:200

ŷ0 =
1√
ᾱt

(yt − (1−
√
ᾱt)gϕ(E ,X)−

√
1− ᾱtϵθ(yt, t, E ,X)) (12)
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Then we use this estimate to predict the intermediate state: yt−1 = γ0ŷ0+γ1yt+γ2gϕ(E ,X)+ β̃tz,201

where z ∼ N (0, I) and the coefficients γ0, γ1, γ2 and β̃t are defined in Equation 6. This process202

iteratively refines the anomaly representations until we obtain the final anomaly scores y0. The203

complete algorithm is provided in Appendix B.204

4.4 Prior-aware Strided Sampling205

As can be seen from Equation 11, our training actually results in a topological-aware denoising206

network capable of denoising the predicted prior score at arbitrary time step t. Inspired by Song et al.207

[2021a], we can use this denoising network to perform time-step skipping sampling, greatly reducing208

the number of sampling steps. By discarding the Markov constraint brought by Equation 4, we can209

obtain the conditional non-Markovian reverse process different from Equation 6 as follows:210

yt−1 =
√
ᾱt−1ŷ0 + (1−

√
ᾱt−1)gϕ(E ,X) +

√
1− ᾱt−1 − σ2

t ϵθ(yt, t, E ,X) + σtϵt (13)

where ŷ0 is the denoised score in Equation 16. For detailed derivation, please refer to Appendix E.211

By substituting Equation 16 into Equation 13, we can obtain:212

yt−1 =

√
ᾱt−1

ᾱt
(yt − (1−

√
ᾱt)gϕ(E ,X)−

√
1− ᾱtϵθ(yt, t, E ,X))

+ (1−
√
ᾱt−1)gϕ(E ,X) +

√
1− ᾱt−1 − σ2

t ϵθ(yt, t, E ,X) + σtϵt

(14)

This allows the use of a forward process defined only on a subset of the latent variables yτ1 , . . . ,yτt213

where τ1, . . . , τt is an increasing subsequence of 1, ..., T with length S, where S could be much214

smaller than T . To reduce the number of sampling steps from T to K, we use K evenly spaced real215

numbers between 1 and T (inclusive), and then round each resulting number to the nearest integer, as216

follows: {τi}Ki=1 =
{
1 + (T−1)(i−1)

K−1

}K

i=1
.217

When our prior is more confident, fewer sampling steps, or a smaller K, are needed, and vice versa.218

We propose a heuristic strategy to dynamically adjust the size of K according to the confidence of219

different prior scores of anomalies. We choose the inverse sigmoid function to simulate the decay of220

the ratio as the confidence |ϕ(E ,X)− 0.5| increases:221

K =
r

1 + exp
(

|gϕ(E,X)−0.5|
0.5

) × T (15)

Typically, with r set to 2, our framework adjusts the sampling steps K to around 1000 for ambiguous222

priors near 0.5, and reduces it to about 500 for high-confidence priors close to 1. Notably, most223

nodes on the graph are associated with high prior confidence, which leads to a substantial decrease224

in computational demand. Conversely, for anomalous nodes that are adept at camouflage, the lower225

prior confidence necessitates a larger number of diffusion steps, facilitating their accurate detection.226

Our method thus strikes a balance between computational efficiency and thorough identification. We227

show the inference process with our prior-aware strided sampling in Appendix K.228

5 Experiments229

5.1 Experimental Setup230

Datasets We have extensively employed five diverse datasets from various domains to verify our231

method. They are the e-finance category dataset Elliptic [Weber et al., 2019], crowd-sourcing category232

datasets Tolokers [Platonov et al., 2023] and YelpChi [Rayana and Akoglu, 2015], and Social media233

datasets Question [Platonov et al., 2023] and Reddit [Kumar et al., 2019]. For the detail of dataset234

statistics and processing, please refer to Appendix H.235

Baselines We have compared our CGADM with two categories of methods in the context of graph236

anomaly detection: (1) Standard GNNs, which include GCN [Kipf and Welling, 2017], GIN [Xu237

et al., 2019], GraphSAGE [Hamilton et al., 2017], and GAT [Velickovic et al., 2018]; (2) GNNs238

specifically designed for anomaly detection, such as GAS [Li et al., 2019], PCGNN [Liu et al.,239

2021], BWGNN [Tang et al., 2022], GHRN [Gao et al., 2023b], XGBGraph [Tang et al., 2023], and240

CONSISGAD [Chen et al., 2024]; (3) diffusion-based data-centric approaches for GAD: GODM [Ma241

et al., 2024a], CGenGA [Liu et al., 2023]. For detailed descriptions, please refer to Appendix F.242
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Table 1: Performance Comparison on Graph Anomaly Detection
Ellip Tolo Yelp Quest Reddit Average

Model AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

GCN 80.19 95.12 41.44 73.58 23.59 59.89 10.27 67.73 5.65 62.55 32.23 71.77
GIN 83.88 96.21 37.89 74.02 38.13 77.40 11.23 68.07 5.38 65.25 35.30 76.19
Graphsage 86.16 96.61 43.73 77.30 50.23 83.24 13.86 70.64 5.78 63.67 39.95 78.29
GAT 87.59 97.11 42.18 76.66 46.64 80.95 13.19 68.19 5.42 63.55 39.00 77.29

GAS 87.54 97.14 42.39 74.55 39.18 78.63 12.41 66.09 5.66 61.23 37.44 75.53
PCGNN 67.29 93.88 36.76 71.28 45.32 79.61 13.79 69.12 4.13 54.58 33.46 73.69
BWGNN 87.90 96.99 45.02 77.80 49.15 81.85 14.64 69.96 5.42 60.63 40.43 77.45
GHRN 88.13 97.04 45.25 77.98 49.78 82.36 14.61 69.32 5.85 63.51 40.72 78.04
XGBGraph 90.47 94.35 44.47 77.28 75.91 91.85 14.33 64.90 4.59 60.58 45.95 77.79
CONSISGAD 86.42 96.38 40.59 76.03 41.74 79.35 12.85 70.54 5.57 66.99 37.43 77.86

GODM 85.89 93.92 46.15 76.42 51.77 84.33 15.11 68.86 5.55 62.10 40.89 77.13
CGenGA 87.36 96.07 44.89 78.95 52.76 85.65 15.34 68.46 5.78 64.78 41.23 78.78

CGADM 97.03 99.34 46.02 79.68 76.54 92.69 18.51 69.41 5.79 65.85 48.78 81.39
† Boldface denotes the highest score, and underline indicates the best result of the baselines.

Metrics Following the evaluation setup employed by most anomaly detection works [Han et al.,243

2022a], we have chosen the Area Under the Receiver Operating Characteristic Curve (AUROC) and244

the Area Under the Precision-Recall Curve (AUPRC) as our metrics for graph anomaly detection.245

Both of these metrics range between 0 and 1, and we record them as percentages for convenience.246

For both metrics, a higher value indicates better performance.247

Implementation Details For CGADM, the layer number of graph convolution is set to three, a248

value considered reasonable by most works [Liu et al., 2021]. For our diffusion process, the noise249

levels at the initial and final time steps, β1 and βT , are set to 1e-4 and 0.02, respectively. Additionally,250

we employ linear interpolation to divide the time steps between them, which is consistent with251

DDPM [Ho et al., 2020]. For other implementation details, please refer to Appendix L.252

5.2 Overall Comparison253

We summarize the performance of all algorithms in terms of AUROC and AUPRC across different254

datasets in Table 1. We put more results of F1-score in Appendix O and results on additional255

datasets in Appendix A and M. The results demonstrate that our CGADM outperforms most other256

baselines across all metrics. We conduct two-sample t-tests, and p − value < 0.05 indicates that257

the improvements are statistically significant. In addition to these findings, we make the following258

observations:259

• In terms of average performance, CGADM achieves 48.78% AUPRC and 81.39% AUROC,260

representing significant improvements of 6.15% in AUPRC and 4.53% in AUROC over the best261

baseline (XGBGraph for AUPRC and CONSISGAD for AUROC).262

• GAD methods represent state-of-the-art methods. This indicates that GAD, with its unique263

challenges of data imbalance, data heterogeneity, and deliberate node obfuscation, cannot be264

adequately addressed by general GNNs and requires specialized design.265

• No single baseline method consistently outperforms on all datasets. We believe this is because these266

discriminative models identify anomalous nodes through decision boundaries. Many anomalous267

nodes manage to cross these boundaries by obfuscating their features, making it difficult for these268

methods to adapt to various scenarios. In contrast, our CGADM consider the joint distribution of269

anomaly in a generative way, making it difficult for anomalous nodes to obfuscate.270

• Diffusion-based approaches (GODM, CGenGA) that use data augmentation show competitive271

performance, but CGADM consistently outperforms them by directly modeling the joint anomaly272

distribution rather than relying on data augmentation techniques.273

• Among standard GNN methods, GraphSage and GAT perform better than the other two methods,274

especially on the YelpChi dataset, which has significantly more edges. This aligns with our analysis275

in the introduction, where GNN, as a low-pass filter, blurs the distinctive features of anomalies276

in its inherent feature aggregation mechanism, a problem that worsens with an increased number277

of edges. GraphSage and GAT to some extent mitigate the over-smoothing issue by sampling278

neighbors or amplifying the weight of important neighbors, respectively.279
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Figure 3: Parameter Sensitivity on Different Datasets

5.3 Comparison with Different Prior Model280

In generating the final anomaly value with CGADM, to ensure effectiveness, we do not start the281

reverse process from a random state. Instead, we opt for a conditional anomaly estimator to guide282

the reverse process of the model. For efficiency, we employ a lightweight ensemble trees model283

as the estimator. Here, we explore both Random Forest (RF) and Extreme Gradient Boosting Tree284

(XGBT) as estimator. We denote CGADM using RF and XGBT as conditional anomaly estimators285

as CGADMRF and CGADMXGBT , respectively. Figure 2 records the performance of these models286

on the Elliptic and YelpChi datasets. Two observations can be made from figure 2. Firstly, both287

CGADMRF and CGADMXGBT outperform their corresponding initial priors. This proves that288

our CGADM’s diffusion process can significantly enhance the performance of GAD. Secondly, the289

performance gap between CGADMRF and CGADMXGBT is significantly smaller than that between290

RF and XGBT. This indicates that our CGADM possesses strong robustness. Even in the face of291

initially inaccurate prior estimates, our CGADM can effectively correct the results under the iterative292

refinement of the topological-guided denoising network.293

5.4 Parameter Sensitivity294

Impact of Graph Convolution Layer L In order to better capture the topological information sur-295

rounding nodes for joint distribution modeling, we employ a GNN-based encoder in our topological-296

guided denoising network. We explored the impact of the number of graph convolution layers on the297

Elliptic and YelpChi datasets. The results are shown in Figures 3 (1) and (2). From the results, we can298

observe a slowly gradual improvement in performance as the number of layers increases, reaching299

farther topological structure information. Even at a depth of five layers, there is no performance300

degradation. This suggests that our CGADM can effectively overcome the over-smoothing problem301

commonly encountered in traditional discriminative methods based on GNNs. We attribute this302

mainly to two factors. First, the paradigm shift to generating the joint distribution of anomaly on303

the graph allows considering the influence of surrounding neighbor nodes. Second, our residual304

propagation mechanism prevents the high-frequency information of nodes, thereby retaining more305

valuable information for anomaly value generation.306

Impact of the Final Noise Scale βT We modify the endpoint of CGADM’s diffusion process from307

the conventional Gaussian distribution N(0, I) to N(gϕ(E ,X), I). Intuitively, βT represents the308

maximum degree to which our noise-added yt can deviate from the ground truth. It also represents309

8



0100200300400500
Total Sampling Step K

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

)

Time Cost and Performance on YelpChi
Computation Time
AUPRC
AUROC

60

62

64

66

68

70

72

74

76

AU
PR

C 
(%

)

84

86

88

90

92

AU
RO

C 
(%

)

Figure 4: Time cost and Accuracy w.r.t. Sampling
Steps K

CGADM CGADMS

Average
Reverse Step

1000 583.0256

AUPRC (%) 76.5424 73.6636
AUROC (%) 92.6930 91.9423

Table 2: Performance Metrics

the maximum scale at which our denoising network can correct the prior. We studied the magnitude of310

this degree on the Tolokers and Questions datasets, with the results shown in Figure 3 (3) and (4). We311

can observe that as the maximum correction scale increases, the performance initially improves. This312

suggests that the bias of the prior can be better corrected at this point. However, when the correction313

scale exceeds 0.02, the performance begins to decline as the maximum correction scale continues to314

increase. This may because the maximum correction scale has already surpassed the maximum bias315

produced by the prior. Overcorrection of the prior could prevent CGADM from modeling the true316

distribution. Therefore, we recommend using βT = 0.02 in our cases,317

5.5 Efficiency Analysis318

In Section 4.4, we designed a prior-aware strided sampling strategy to adaptively reduce the reverse319

steps needed to generate anomaly values. To verify its efficiency, we designed the following two320

ablation experiments. In the first experiment, we tested the computation time and corresponding321

model performance of our CGADM with different sampling steps during generation. The results322

are shown in Figure 4. As can be seen, as our striding magnitude increases, i.e., the reverse steps323

of sampling become fewer, both computation time and model performance decrease. However, the324

decline in computation time is much greater than the decline in graph anomaly detection performance.325

Even when the striding is not large at the beginning, the decline in performance is not significant.326

This implies that sacrificing a little performance can result in substantial savings in computation327

time. Therefore, we designed another ablation experiment. Here, we denote CGADM configured328

with prior-aware strided sampling as CGADMs and present its model performance and average329

reverse steps during inference in Table 2. Compared to the original 1000 sampling steps, our method330

reduces the average sampling steps for all nodes to 583, while ensuring only a slight drop in model331

performance, which remains highly competitive.332

6 Conclusions and Limitation333

Existing GNN-based graph anomaly detection methods are vulnerable to fraudulent nodes due to334

their feature aggregation and discriminative nature. To address this, we propose the Conditional335

Graph Anomaly Diffusion Model (CGADM), which considers node anomalies holistically across336

the graph, generating a distribution of anomaly values. We introduce a prior-guided diffusion337

process with a pre-trained conditional anomaly estimator to constrain the diffusion. Additionally,338

we implement a confidence-aware mechanism to adaptively determine reverse time steps, improving339

computational efficiency. Experimental results on standard benchmarks demonstrate that CGADM340

achieves state-of-the-art performance.341

While CGADM shows strong performance, a few limitations remain. First, the model’s reliance on342

pre-trained anomaly priors may require adaptation for applications with dynamic graph structures.343

Second, the current approach assumes a supervised setting, while real-world applications often344

require adaptation to unsupervised scenarios. These issues are areas for future improvement.345
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A Evaluation on Additional Datasets575

To further validate the generalizability of our approach, we conducted experiments on four additional576

real-world datasets Tang et al. [2023]: Weibo, Amazon, T-Finance, and T-Social. These datasets577

represent diverse application domains and vary in their structural properties and anomaly distributions.578

Tables 3 and 4 present the AUPRC and AUROC results, respectively, comparing our CGADM with579

state-of-the-art methods XGBGraph and CONSISGAD.580

Table 3: AUPRC comparison on additional datasets
Model Weibo Amazon T-Finance T-Social
XGBGraph 0.9516 0.9020 0.8836 0.9203
CONSISGAD 0.8847 0.8047 0.7283 0.5212
CGADM (Ours) 0.9735 0.9191 0.9154 0.9408

The results demonstrate that CGADM consistently outperforms both XGBGraph and CONSISGAD581

in terms of AUPRC across all four additional datasets. While XGBGraph achieves marginally higher582

AUROC on Weibo and T-Social datasets, CGADM maintains competitive performance and excels583
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Table 4: AUROC comparison on additional datasets
Model Weibo Amazon T-Finance T-Social
XGBGraph 0.9937 0.9682 0.9623 0.9914
CONSISGAD 0.9654 0.9409 0.9026 0.8963
CGADM (Ours) 0.9879 0.9736 0.9708 0.9761

on Amazon and T-Finance datasets. These comprehensive evaluations across nine diverse datasets584

underscore the robustness and effectiveness of our generative approach to graph anomaly detection585

across various domains and graph structures.586

B Inference with Prior-Guided Initialization587

Algorithm 1 presents our complete inference procedure for anomaly detection. Unlike traditional588

diffusion models that start from standard Gaussian noise, we initialize the reverse process with our589

learned prior yT ∼ N (gϕ(E ,X), I).590

For each reverse step t, we first calculate the denoised representation ŷ0 using Equation 16, which591

reverses the forward process by removing the estimated noise. Then, based on this estimate, we592

compute the intermediate state yt−1 using the posterior formula from Equation 6. This iterative593

refinement continues until we reach y0, which provides our final anomaly scores.594

Algorithm 1 Inference for Anomaly Detection

1: Initialize yT ∼ N (gϕ(E ,X), I)
2: for t = T to 1 do
3: Calculate reparameterized ŷ0 according to Equation 10:

ŷ0 =
1√
ᾱt

(yt − (1−
√
ᾱt)gϕ(E ,X)−

√
1− ᾱtϵθ(yt, t, E ,X)) (16)

4: if t > 1 then
5: Draw z ∼ N (0, I)

6: yt−1 = γ0ŷ0 + γ1yt + γ2gϕ(E ,X) + β̃tz, according to Equation 6.
7: else
8: Set yt−1 = ŷ0

9: end if
10: end for
11: return y0

The key advantage of this approach is that it leverages our prior knowledge of anomaly patterns to595

guide the generation process, making it more resistant to deceptive tactics employed by anomalous596

nodes compared to generating directly from random noise.597

C Common Process of Diffusion Probabilistic Model598

Here we show the common steps in the diffusion model as follows:599

• Forward process: Given an input data sample x0 ∼ q(x0), the forward process constructs the latent600

variables x1:T in a Markov chain by progressively adding Gaussian noises over T steps. Specifically,601

the forward transition xt−1 → xt is defined as q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), where602

t ∈ {1, ..., T} refers to the diffusion step, N denotes the Gaussian distribution, and βt ∈ (0, 1)603

regulates the noise scales added at step t. If T → ∞, xT approaches a standard Gaussian604

distribution [Ho et al., 2020].605

• Reverse process: Diffusion models (DMs) aim to remove the added noises from xt to recover606

xt−1 in the reverse step, striving to capture minor alterations in the complex generation process.607

Formally, taking xT as the initial state, DMs learn the denoising process xt → xt−1 iteratively608

by pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), where µθ(xt, t) and Σθ(xt, t) are the mean and609

covariance of the Gaussian distribution predicted by a neural network with parameters θ.610
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• Optimization: DMs are optimized by maximizing the Evidence Lower Bound (ELBO) of the611

likelihood of observed input data x0. Denote DKL(p||q) as the Kullback–Leibler (KL) divergence612

from distribution p to distribution q:613

log p(x0) = log

∫
p(x0:T )dx1:T = logEq(x1:T |x0)

[
p(x0:T )

q(x1:T |x0)

]
≥ Eq(x1:T |x0)

[
p(x0:T )

q(x1:T |x0)

]
= Eq(x1|x0) [log pθ(x0|x1)]− DKL(q(xT |x0)||p(xT ))

−
T∑

t=2

Eq(xt|x0) [DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))]

(17)

• Inference: After training θ, DMs can draw xT ∼ N (0, I) and use pθ(xt−1|xt) to iteratively repeat614

the generation process xT → xT−1 → . . . → x0.615

D Posterior Coefficients Derivation616

Similar to Han et al. [2022b], here we give the detailed derivation of Equation 6 and 7.617

q(yt−1|yt,y0, E ,X)

= q(yt−1|yt,y0, gϕ(E ,X)) ∝ q(yt|yt−1, gϕ(E ,X))q(yt−1|y0, gϕ(E ,X))

∝ exp

(
−1

2

((
yt −

(
1−√

αt

)
gϕ(E ,X)−√

αtyt−1

)2
βt

+

(
yt−1 −

√
ᾱt−1y0 − (1−√

ᾱt−1) gϕ(E ,X)
)2

1− ᾱt−1

))

∝ exp

(
−1

2

(
αty

2
t−1 − 2

√
αt

(
yt −

(
1−√

αt

)
gϕ(E ,X)

)
yt−1

βt

+
y2
t−1 − 2 (

√
ᾱt−1y0 + (1−√

ᾱt−1) gϕ(E ,X))yt−1

1− ᾱt−1

))
= exp(−1

2
((
αt

βt
+

1

1− ᾱt−1︸ ︷︷ ︸
Term 1

)y2
t−1

− 2(

√
αt−1

1− ᾱt−1
y0 +

√
αt

βt
yt +

(√
αt

(√
αt − 1

)
βt

+
1−√

ᾱt−1

1− ᾱt−1

)
gϕ(E ,X)︸ ︷︷ ︸

Term 2

)yt−1)),

(18)

where618

Term 1 =
αt (1− ᾱt−1) + βt

βt (1− ᾱt−1)
=

1− ᾱt

βt (1− ᾱt−1)
, (19)

619

β̃t =
1

(1)
=

1− ᾱt−1

1− ᾱt
βt, (20)

Afterwards, we divide each coefficient in Term 2 by Term 1.620

γ0 =

√
ᾱt−1

1− ᾱt−1
/1 =

√
ᾱt−1

1− ᾱt
βt (21)

γ1 =

√
αt

βt
/1 =

1− ᾱt−1

1− ᾱt

√
αt, (22)
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and621

γ2 =

(√
αt

(√
αt − 1

)
βt

+
1−√

ᾱt−1

1− ᾱt−1

)
/1

=
αt − ᾱt −

√
αt (1− ᾱt−1) + βt − βt

√
ᾱt−1

1− ᾱt

= 1 +
(
√
ᾱt − 1)

(√
αt +

√
ᾱt−1

)
1− ᾱt

.

(23)

Finally, we put every γ0, γ1, and γ2 together and obtain Equation 6 and 7.622

µ̃ (yt,y0, gϕ(E ,X)) = γ0y0 + γ1yt + γ2gϕ(E ,X) (24)

E Derivation of conditional non-Markovian reverse process623

Following DDIM, we formally carry out the derivation of discarding the Markov constraint in-624

troduced by Equation 4 in our prior-conditional reverse step Equation 6. First, let’s organize our625

target: given q (yt | y0, gϕ(E ,X)) and q (yt−1 | y0, gϕ(E ,X)), without q (yt | yt−1), we aim to626

find q (yt−1 | yt,y0, gϕ(E ,X)).627

Here we assume that yt−1 is a linear combination of yt, y0 and prior gϕ(E ,X) with coefficients628

denoted as mt, nt and ot, respectively. That is,629

yt−1 = mtyt + nty0 + otgϕ(E ,X) + σtϵ1 (25)

We also know that630

yt =
√
ᾱty0 + (1−

√
ᾱt)gϕ(E ,X) +

√
1− ᾱtϵ2, (26)

yt−1 =
√
ᾱt−1y0 + (1−

√
ᾱt−1)gϕ(E ,X) +

√
1− ᾱt−1ϵ3. (27)

Here, the subscripts of ϵn are used to distinguish different samples from the Gaussian distribution.631

Substituting Equation 26 into Equation 25, we get632

yt−1 = mt

(√
ᾱty0 + (1−

√
ᾱt)gϕ(E ,X) +

√
1− ᾱtϵ2

)
+ nty0 + otgϕ(E ,X) + σtϵ1 (28)

=
(
mt

√
ᾱt + nt

)
y0 + (mt −mt

√
ᾱt + ot)gϕ(E ,X) +mt

√
1− ᾱtϵ2 + σtϵ1 (29)

Therefore, we have633

mt

√
ᾱt + nt =

√
ᾱt−1, (30)

m2
t (1− αt) + σ2

t = 1− ᾱt−1, (31)

mt −mt

√
ᾱt + ot = 1−

√
ᾱt−1 (32)

Immediately, we can calculate mt and nt:634

mt =

√
1− ᾱt−1 − σ2

t

1− ᾱt
, (33)

nt =
√
ᾱt−1 −

√
ᾱt

1− ᾱt
(1− ᾱt−1 − σ2

t ), (34)

ot = 1−
√
ᾱt−1 −

√
1− ᾱt−1 − σ2

t

1− ᾱt
(1−

√
ᾱt). (35)
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Substituting back into Equation 25, we have635

yt−1 =

√
1− ᾱt−1 − σ2

t

1− ᾱt
yt +

(
√
ᾱt−1 −

√
ᾱt

1− ᾱt
(1− ᾱt−1 − σ2

t )

)
y0

+ (1−
√
ᾱt−1 −

√
1− ᾱt−1 − σ2

t

1− ᾱt
(1−

√
ᾱt))gϕ(E ,X) + σtϵ (36)

=
√
ᾱt−1y0 + (1−

√
ᾱt−1)gϕ(E ,X)

+
√
1− ᾱt−1 − σ2

t

(
1√

1− ᾱt
yt −

√
ᾱt√

1− ᾱt
y0 −

1−
√
ᾱt√

1− ᾱt
gϕ(E ,X)

)
+ σtϵ (37)

=
√
ᾱt−1y0 + (1−

√
ᾱt−1)gϕ(E ,X)

+
√
1− ᾱt−1 − σ2

t

yt −
√
ᾱty0 − (1−

√
ᾱt)gϕ(E ,X)√

1− ᾱt
+ σtϵ (38)

Substituting the model’s predicted value, we have636

yt−1 =
√
ᾱt−1ŷ0|t + (1−

√
ᾱt−1)gϕ(E ,X) +

√
1− ᾱt−1 − σ2

t ϵθ(yt, t, E ,X) + σtϵ (39)

At this point, the derived result Equation 39 is completely consistent with Equation 14. That is, we637

use the two conditions q (yt | y0, gϕ(E ,X)) and q (yt−1 | y0, gϕ(E ,X)), without q (yt | yt−1), and638

obtain q (yt−1 | yt,y0, gϕ(E ,X)). DDPM removes the condition q (yt | yt−1), leading to the more639

general DDIM sampling formula.640

F Baselines641

In this section, we introduce the baseline models, which can be broadly bifurcated into two cate-642

gories: (1) General-purpose graph neural networks, and (2) Techniques specifically designed for643

graph anomaly detection, and (3) Diffusion-based data augmentation approaches for graph anomaly644

detection. We have annotated each model with their respective categories for easy differentiation.645

• GCN [Kipf and Welling, 2017] (1): This technique employs the convolution operation on646

graphs to propagate information from a node to its adjacent nodes. This allows the network647

to learn a representation for each node, grounded on its local neighborhood.648

• GIN [Xu et al., 2019] (1): A variant of GNN, GIN is designed to encapsulate the graph’s649

structure while maintaining graph isomorphism. This implies that it yields identical embed-650

dings for graphs that are structurally indistinguishable, irrespective of permutations in their651

node labels.652

• GraphSAGE [Hamilton et al., 2017] (1): This is an inductive learning framework that653

generates node embeddings by sampling and aggregating features from a node’s local654

neighborhood.655

• GAT [Velickovic et al., 2018] (1): This GNN framework incorporates the attention mecha-656

nism, assigning varying degrees of importance to different nodes during the neighborhood657

information aggregation process. This enables the model to concentrate on the most infor-658

mative neighbors.659

• GAS [Li et al., 2019] (2): This is a highly scalable technique for detecting spam reviews. It660

expands GCN to manage heterogeneous and heterophilic graphs and adapts to the graph661

structure of specific GAD applications using the KNN algorithm.662

• PCGNN [Liu et al., 2021] (2): This framework is designed for imbalanced GNN learning in663

fraud detection. It employs a label-balanced sampler to select nodes and edges for training,664

leading to a balanced label distribution in the induced sub-graph. Additionally, it uses a665

learnable parameterized distance function to select neighbors, filtering out superfluous links666

and incorporating beneficial ones for fraud prediction.667

• BWGNN [Tang et al., 2022] (2): This technique is proposed to address the ’right-shift’668

phenomenon of graph anomalies, where the spectral energy distribution focuses less on669
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low frequencies and more on high frequencies. It utilizes the Beta kernel to tackle higher670

frequency anomalies through multiple flexible, spatial/spectral-localized, and band-pass671

filters.672

• GHRN [Gao et al., 2023b] (2): This approach addresses the heterophily issue in the spectral673

domain of graph anomaly detection by pruning inter-class edges to highlight and outline the674

graph’s high-frequency components.675

• XGBGraph [Tang et al., 2023] (2): A gradient boosting framework that combines traditional676

XGBoost with graph structural features.677

• CONSISGAD [Chen et al., 2024] (2): A consistency training approach that leverages678

learnable data augmentation for graph anomaly detection with limited supervision.679

• GODM [Ma et al., 2024a] (3): A data-centric approach for graph anomaly detection with680

few labels. It employs a diffusion model to generate positive examples in the latent space,681

addressing the label imbalance problem that is inherent in anomaly detection tasks.682

• CGenGA [Liu et al., 2023] (3): A framework that uses latent diffusion models for data683

augmentation in graph anomaly detection. It generates synthetic graph data to enhance the684

training of supervised outlier detection methods, particularly effective in scenarios with685

limited labeled anomalies.686

G Challenge of Graph Anomaly Detection687

Although GAD is essentially a binary node classification problem, it presents several unique chal-688

lenges. Firstly, anomalous nodes typically constitute a small fraction of the total nodes, leading to a689

significant data imbalance [Liu et al., 2021]. Secondly, graphs containing anomalies often exhibit690

strong heterophily, where connected nodes possess diverse features and labels [Gao et al., 2023b,691

Tang et al., 2023]. This heterophily necessitates the development of methods that can effectively692

handle neighborhood feature disparities during message passing. Lastly, anomalous nodes tend to693

camouflage their features and connections, striving to blend in by mimicking normal patterns within694

the graph [Liu et al., 2020].695

H Details of the datasets696

The detailed statistics of the datasets we used are in Table 5. In line with the data characteristics of697

anomaly detection, the selected datasets each contain over 100 anomaly points, and the proportion698

of anomalies does not exceed 25%, satisfying the inherent imbalance problem in graph anomaly699

detection [Tang et al., 2023]. For each dataset, we randomly selected 20% of the points as training700

data, 10% of the points as validation data, and the remaining points as test data.701

Table 5: Descriptive statistics of the datasets.
#Nodes #Edges Feature Dim Anomaly Ratio Feature Type

Elliptic 203,769 234,355 166 9.8% Timestamps and transaction information
Tolokers 11,758 519,000 10 21.8% User profile with task performance statistics
YelpChi 45,954 3,846,979 32 14.5% Hand-crafted review features and statistics
Questions 48,921 153,540 301 3.0% FastText embeddings for user descriptions
Reddit 10,984 168,016 64 3.3% Hand-crafted review features and statistics

I Implementation of Topological-guided Denoising Network702

Reflecting upon Equation 9, we initially extend the formula of graph convolution to matrix form to
facilitate computation across the entire graph, as shown below:

Hl = σ(Wl−1(I−D−1AHl−1))

After conducting L rounds of convolution, we use weighted summation as our aggregation function
for the hidden representations obtained from each layer of graph convolution. The formula is as
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follows:

Hfinal = AGG(H1,H2, . . . ,HL) =

L∑
l=0

αlH
l

Here, αl are the weights for each layer’s representation, which can be learned during training. Having
obtained the representation of nodes that integrates both topological structure and node features, we
construct our denoising function ϵθ(yt, t,H

final) through a Multilayer Perceptron (MLP). Following
the original DDPM Ho et al. [2020], we also adopt position embedding to encode time t. Therefore,
the denoising function ϵθ is as follows:

ϵθ = MLP (Concat[Pos(t),yt,H
final])

In this equation, Pos(t) represents the position embedding of time mathbft, yt is the current703

representation of the nodes, and Hfinal is the final aggregated representation after L layers of graph704

convolution.705

J Training of CGADM706

According to the loss in Equation 11, the pseudo algorithm for training is shown in Algorithm 2707

Algorithm 2 CGADM Training

1: Pre-train gϕ(E ,X) that predicts the anomaly prior
2: repeat
3: Draw t ∼ Uniform({1, . . . , T})
4: Draw ϵ ∼ N (0, I)
5: Compute the noise estimation loss:

Lϵ = ||ϵ− ϵθ(
√
ᾱty0 + (1−

√
ᾱt)gϕ(E ,X) +

√
1− ᾱtϵ, t, E ,X)||2

6: Take a numerical optimization step on ∇θLϵ

7: until Convergence

K Inference with Prior-aware Strided Sampling708

We show the complete pseudo algorithm for inference with our prior-aware strided sampling strategy709

in Algorithm 3710

L Implementation Detail711

All experiments were conducted on a Linux machine equipped with an Nvidia GeForce RTX 3090.712

The CUDA version used was 11.1, and the driver version was 455.45.01. We implemented our713

algorithm and the corresponding baseline methods using PyTorch [Paszke et al., 2019] and the graph714

computation framework Pytorch-Geometric [Fey and Lenssen, 2019]. For the Random Forest (RF)715

and Extreme Gradient Boosting Tree (XGBT) that serve as conditional anomaly estimators, we used716

the RF version implemented in the Scikit-Learn library Pedregosa et al. [2011]. For XGBoost Chen717

and Guestrin [2016], we utilized its official implementation.718

We initialize the latent vectors for all models with a Gaussian Distribution, having a mean value719

of 0 and a standard deviation of 0.01. To ensure a level playing field, the dimension of the hidden720

layer for all baseline models, as well as our CGADM, is set to 64. We conducted a grid search for721

hyper-parameter tuning. The learning rates were selected from the set [0.005, 0.01, 0.02, 0.05]. To722

prevent overfitting, we incorporated an L2 norm with the coefficient tuned from the set [0.001, 0.005,723

0.01, 0.02, 0.1]. For all methods, we selected the best models by implementing early stopping when724

the AUROC on the validation set did not increase for five consecutive epochs.725
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Algorithm 3 Inference for Anomaly Detection with Sampling Strategy

1: Initialize yT ∼ N (gϕ(E ,X), I)
2: Compute K based on the prior confidence |gϕ(E ,X)− 0.5| using:

K =
r

1 + exp
(

|gϕ(E,X)−0.5|
0.5

) × T

where r is a hyperparameter.
3: Generate sampling time steps {τi}Ki=1:

τi =

⌊
1 +

(T − 1)(i− 1)

K − 1

⌋
, i = 1, . . . ,K

4: for i = K to 1 do
5: Set t = τi
6: Calculate reparameterized ŷ0 using Equation 16:

ŷ0 =
1√
ᾱt

(
yt − (1−

√
ᾱt)gϕ(E ,X)−

√
1− ᾱtϵθ(yt, t, E ,X)

)
7: if i > 1 then
8: Draw z ∼ N (0, I)
9: Update yt−1 using the modified non-Markovian reverse process:

yt−1 =
√

ᾱτi−1 ŷ0 + (1−
√

ᾱτi−1)gϕ(E ,X) +
√

1− ᾱτi−1 − σ2
t ϵθ(yt, t, E ,X) + σtz

10: else
11: Set yt−1 = ŷ0

12: end if
13: end for
14: return y0

Table 6: Performance comparison on the DGraph dataset.
Method AUPRC AUROC
GCN 3.66 74.97
GIN 3.22 73.14
GraphSAGE 3.43 73.81
GAT 3.65 75.17
GAS 2.91 71.21
PCGNN 2.82 71.78
BWGNN 3.63 75.16
GHRN 3.68 75.15
CGADM 3.83 76.43

M Efficacy in Highly Imbalanced Scenarios726

We conducted additional experiments on the DGraph dataset Huang et al. [2022], a highly imbalanced727

real-world financial fraud detection dataset where anomalies constitute only 1.3% of the data. The728

results are presented in Table 6:729

As Table 6 illustrates, CGADM consistently outperforms all baseline methods on both AUPRC and730

AUROC metrics in this extremely imbalanced setting. Notably, the AUPRC metric demonstrates731

CGADM’s ability to handle rare event detection by excelling in anomaly-specific precision and recall.732

Similarly, the superior AUROC indicates robust overall discriminative performance.733

N Empirical Results on Efficiency734

We conducted experiments to compare memory usage, training time, and inference time with baselines735

specifically designed for anomaly detection on the Elliptic dataset, which contains 203,769 nodes736

and 234,355 edges. The results are summarized in Table 7:737
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Table 7: Efficiency comparison on the Elliptic dataset.
Model Memory (MB) Training Time (s/epoch) Inference Time (s)
GAS 1418 14.96 2.3865
PCGN 914 1.86 0.0827
BWGNN 446 0.75 0.1185
GHRN 924 1.57 0.1249
CGADM (ours) 1048 2.21 0.5691

From these empirical results, we draw the following observations:738

• Memory Efficiency: The use of sparse matrix computations ensures that CGADM remains739

efficient in terms of memory usage, even for large-scale graphs. The marginal increase in740

memory usage is negligible compared to the scalability benefits.741

• Training Efficiency: While CGADM’s training time is moderately higher than discrim-742

inative methods (2.21s vs 0.75s for BWGNN), the performance gains (+10% AUPRC743

improvement over BWGNN) justify this reasonable overhead, especially considering the744

substantial improvement in detection capability.745

• Inference Time: While our inference time is higher than most discriminative methods, the746

increase is justified given the novel generative anomaly detection paradigm. Considering the747

already low baseline inference time of anomaly detection tasks, the additional time overhead748

is acceptable, especially in scenarios where performance improvements are critical.749

Overall, these results demonstrate that CGADM achieves state-of-the-art detection performance with750

reasonable computational demands, striking an effective balance between accuracy and efficiency.751

The slightly higher computational cost compared to discriminative methods is a worthwhile trade-off752

given the substantial performance improvements observed in our experiments.753

O Additional Experiment Results754

We computed the F1-scores for our model and baseline methods across all datasets. These results755

further confirm the superior performance of our model. Table 8 presents the F1-scores, which show756

consistency with the experiment results in Table 1.757

Table 8: F1-scores comparison across datasets.
Model Ellip Tolo Yelp Quest Reddit

GCN 73.672 47.376 27.658 6.856 7.794
GIN 75.338 49.443 42.214 10.288 6.443
GraphSAGE 81.096 50.226 43.949 12.041 10.075
GAT 80.498 50.878 48.891 11.157 8.432
GAS 77.844 48.253 43.404 10.867 9.071
PCGNN 45.090 47.213 44.608 5.796 6.981
BWGNN 83.134 49.983 47.323 12.788 6.501
GHRN 85.678 51.493 45.970 12.696 6.702
XGBGraph 87.555 51.079 65.121 16.088 2.954
CONSISGAD 79.120 49.762 41.606 9.848 6.443
Ours (CGADM) 93.390 51.595 69.396 17.162 9.754

P Robustness of CGADM against Feature Manipulation758

To evaluate the robustness of CGADM against feature manipulation, we introduced feature perturba-759

tions in the Elliptic and Tolokers datasets. Specifically, we randomly perturbed the features of nodes760

with varying proportions (10%, 20%, and 30%) by randomly selecting values from their possible761
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Figure 5: Robustness against Feature Manipulation

ranges with uniform probability. We then compared the performance of CGADM with GHRN (the762

best-performing baseline from our original experiments) under these conditions.763

The results are summarized in Figure 5. As the proportion of perturbed nodes increases, the perfor-764

mance of both models decreases. However, CGADM consistently exhibits a slower decline compared765

to GHRN. This highlights CGADM’s superior robustness to feature perturbations, which we attribute766

to its denoising reconstruction mechanism. This mechanism leverages information from neighboring767

nodes during the reverse diffusion process to iteratively restore the true anomaly signals.768

Q Effect of High- and Low-frequency Signals769

To further substantiate that the high-frequency components are indeed reflected in the residual propa-770

gations, we designed an ablation study comparing our original CGADM (denoted as CGADMHP )771

with a variant (denoted as CGADMLP ) that only propagates low-frequency signals. In CGADMLP ,772

the graph convolution operation is replaced with the standard GCN:773

1

|N (v)|+ 1

hl−1
v +

∑
u∈N (v)

hl−1
u

 , (40)

where the feature representation is averaged across the node and its neighbors, propagating only774

low-frequency signals.775

We conducted experiments on the Elliptic and YelpChi datasets, varying the number of GNN layers in776

the denoiser module. The results are shown in Table 9:777

According to Table 9, we have the following observations:778

1. High-Frequency Signal Preservation Matters: CGADMHP , which retains high-779

frequency signals through residual propagation, consistently outperforms CGADMLP780

across all metrics and datasets. This highlights the importance of preserving high-frequency781
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Table 9: Performance comparison of CGADMHP and CGADMLP with varying GNN layers.
GNN Layers Model AUPRC (Elliptic) % AUROC (Elliptic) % AUPRC (YelpChi) % AUROC (YelpChi) %

1 CGADMHP 97.13 99.22 75.04 92.37
CGADMLP 95.71 98.43 72.23 91.88

2 CGADMHP 97.31 99.38 75.20 92.62
CGADMLP 93.73 97.60 70.92 90.88

3 CGADMHP 97.32 99.44 76.54 92.69
CGADMLP 90.83 95.58 71.43 89.64

4 CGADMHP 97.53 99.44 77.27 93.05
CGADMLP 87.12 92.60 69.98 87.71

5 CGADMHP 97.57 99.50 77.29 92.92
CGADMLP 81.20 89.49 68.71 86.08

information for anomaly detection, as anomalies often manifest as local deviations that are782

captured by these components.783

2. Sensitivity to GNN Layers: For CGADMLP , performance declines significantly as the784

number of GNN layers increases. This is indicative of the well-known over-smoothing issue,785

where stacking multiple low-pass filters causes node representations to converge, losing786

discriminative information. Conversely, CGADMHP remains robust, and its performance787

even improves slightly with additional layers, demonstrating the effectiveness of residual788

propagation in mitigating over-smoothing.789

3. Iterative Refinement Amplifies Over-Smoothing: In the context of our diffusion model,790

the iterative refinement process repeatedly aggregates neighborhood information, exacer-791

bating the impact of over-smoothing in CGADMLP . This leads to a failure to capture792

new anomaly-relevant signals at each stage of refinement. In contrast, CGADMHP avoids793

this issue by leveraging high-frequency signals to refine anomaly detection throughout the794

iterative process.795

R More Comparison with Data-augmentation Methods796

The main distinction between CGADM and the existing data-augmentation methods lies in the797

underlying approach to anomaly detection. While prior works focus on using diffusion models for798

data augmentation to improve detection performance, CGADM adopts a generative, model-centric799

paradigm to directly model the joint distribution of anomalies on the entire graph. Below, we800

summarize the key differences:801

• CAGAD [Xiao et al., 2024]: Uses a graph-specific diffusion model to generate counterfactual802

representations by transforming normal neighbors into anomalous ones. This is a classic803

data augmentation technique to enhance anomaly distinguishability.804

• DEGAD [Pang et al., 2024]: Employs diffusion models to generate manipulated neigh-805

bors, enhancing graphs by creating augmented data. This technique is used as a data806

enhancement module within a contrastive learning framework.807

• ConGNN [Li et al., 2024]: Introduces a generator based on diffusion models to control808

neighborhood aggregation and create augmented data for better anomaly detection perfor-809

mance.810

• GD [Liu et al., 2024]: Tackles the label imbalance problem by generating positive examples811

using a diffusion model in the latent space. The primary goal is to balance datasets, not812

directly detect anomalies.813

• Diffad [Ma et al., 2024b]: Investigates denoising diffusion models to synthesize graph814

structures and enhance existing methods. This approach focuses on data synthesis rather815

than directly detecting anomalies.816

We have conducted a detailed experimental comparison of our proposed Conditional Graph Anomaly817

Diffusion Model (CGADM) with some diffusion-based data augmentation methods CAGAD [Xiao818

et al., 2024], DEGAD [Pang et al., 2024], ConGNN [Li et al., 2024], GD [Liu et al., 2024], and819

Diffad [Ma et al., 2024b]. We analyzed their performance across several standard benchmark datasets820

(Elliptic, Tolokers, and YelpChi), and the key results are summarized below:821
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Table 10: AUPRC and AUROC comparison with Data Augmentation Methods
Metric Model Ellip Tolo Yelp

AUPRC

CAGAD 89.75 40.80 72.30
DEGAD 93.86 43.51 75.11
ConGNN 91.60 42.22 73.60

GD 88.63 39.90 68.01
Diffad 90.05 41.75 71.28

CGADM 97.28 45.11 76.54

AUROC

CAGAD 94.82 72.22 90.34
DEGAD 97.88 76.20 92.22
ConGNN 95.60 74.56 91.33

GD 93.53 70.70 83.84
Diffad 92.72 73.31 88.21

CGADM 99.34 78.11 92.69

As shown in the Table 10, CGADM consistently outperforms the data-augmentation methods in both822

AUPRC and AUROC across all datasets. This underscores the efficacy of our generative framework823

in addressing graph anomaly detection challenges.824

R.1 Quantitative Analysis of Over-smoothing Mitigation825

To provide quantitative evidence that CGADM effectively mitigates the over-smoothing problem, we
conducted a Dirichlet Energy analysis, which measures the preservation of high-frequency signals in
node embeddings. Dirichlet Energy is defined as:

E(f) =
1

2

∑
(i,j)∈E

wij(f(i)− f(j))2

where wij represents the weight of edge (i, j), and f(i) is the value of the embedding at node i.826

Higher Dirichlet Energy indicates better preservation of high-frequency signals, which is critical for827

distinguishing anomalous nodes.828

We compared our CGADM with a variant where the GNN layers were replaced with traditional GCN829

layers, and the results are presented in Table 11.

Table 11: Dirichlet Energy comparison between CGADM and GCN-based variant
Model Dirichlet Energy (Elliptic) Dirichlet Energy (Tolo)
CGADM 105,002 3,977
CGADM with GCN 66,345 1,383

830

The results demonstrate that CGADM consistently produces embeddings with significantly higher831

Dirichlet Energy compared to the GCN-based variant across both datasets. This confirms that our832

residual propagation mechanism effectively preserves high-frequency signals that are critical for833

anomaly detection, thereby mitigating the over-smoothing problem common in traditional GNN834

approaches.835

These findings complement our ablation studies in Section 5.4, where we showed that CGADM’s836

performance improves with deeper GNN layers, and our analysis in Appendix P, which demonstrates837

the importance of preserving high-frequency components for effective anomaly detection.838

S Theoretical Analysis of Over-smoothing Mitigation in CGADM839

In this section, we provide a rigorous theoretical analysis of how our Conditional Graph Anomaly840

Diffusion Model (CGADM) effectively mitigates the over-smoothing problem typically encountered841

in deep GNNs while still capturing long-range dependencies.842
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S.1 Background: Over-smoothing in GNNs843

Over-smoothing in GNNs occurs when node representations become increasingly similar as more844

layers are stacked, eventually converging to indistinguishable representations. For a standard GNN845

with L layers, the representation of a node v at layer l can be expressed as:846

h(l)
v = σ

W(l−1)
∑

u∈N (v)∪{v}

1

|N (v)|+ 1
h(l−1)
u

 (41)

It has been shown that as L → ∞, all node representations converge: ∥h(L)
v − h

(L)
u ∥ → 0 for any847

nodes v and u in a connected graph.848

S.2 Receptive Field Analysis849

We define the receptive field RL(v) of a node v after L layers of message passing as the set of nodes850

whose features contribute to the final representation of v:851

RL(v) = {u ∈ V | dist(u, v) ≤ L} (42)

where dist(u, v) represents the shortest path distance between nodes u and v.852

Theorem S.1. For a CGADM model with an L-layer GNN denoiser and T denoising steps, the853

effective receptive field of a node v is RT
CGADM(v) = RL×T (v), equivalent to an (L × T )-layer854

traditional GNN without the over-smoothing effect.855

Proof. In CGADM, each denoising step t applies an L-layer GNN to refine the node representations.856

The key difference from traditional GNNs is our residual propagation mechanism in Equation (9):857

hl
v = σ

Wl−1

hl−1
v − 1

|N (v)|
∑

u∈N (v)

hl−1
u

 (43)

For each denoising step t, we define the influence set It×L
v as the set of nodes that contribute to the858

representation of node v after t denoising steps, each involving L graph convolution layers.859

For t = 1, the influence set is identical to the receptive field of an L-layer GNN:860

I1×L
v = RL(v) (44)

For successive denoising steps, the influence set expands recursively:861

It×L
v =

⋃
u∈I(t−1)×L

v

RL(u) (45)

This recursive expansion leads to:862

IT×L
v = RL×T (v) (46)

Thus, after T denoising steps, the effective receptive field of node v in CGADM encompasses nodes863

up to L× T hops away, equivalent to an (L× T )-layer traditional GNN.864

To prove that over-smoothing is mitigated, we analyze the residual propagation mechanism. Unlike865

standard GNNs that apply a low-pass filter by averaging features, our approach computes the866

difference between the node’s feature and the average of its neighbors’ features:867

hl
v −

1

|N (v)|
∑

u∈N (v)

hl−1
u (47)
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This operation is equivalent to a high-pass filter that preserves the high-frequency components of868

the signal. In the spectral domain, for a graph signal x with Fourier coefficients x̂, the residual869

propagation applies a transfer function:870

H(λi) = 1− λi (48)

where λi are the eigenvalues of the normalized Laplacian matrix. This transfer function amplifies871

the contribution of eigenvectors corresponding to larger eigenvalues (high-frequency components)872

while reducing the contribution of eigenvectors corresponding to smaller eigenvalues (low-frequency873

components).874

Consequently, even after multiple denoising steps, the node representations retain their distinctive875

high-frequency signals, preventing over-smoothing while still capturing information from distant876

neighborhoods.877

S.3 Dirichlet Energy Analysis878

To further support our theoretical findings, we analyze the Dirichlet energy, a measure of smoothness879

in graph signals. For a graph signal f , the Dirichlet energy is defined as:880

E(f) =
1

2

∑
(i,j)∈E

wij(f(i)− f(j))2 (49)

where wij is the weight of edge (i, j). Higher Dirichlet energy indicates preservation of more881

high-frequency components.882

Proposition S.2. The residual propagation mechanism in CGADM preserves higher Dirichlet energy883

compared to standard GNN aggregation, resulting in less smoothed node representations.884

Proof. Let f (l) represent the node representations at layer l. For standard GNN aggregation:885

f
(l)
GNN(v) =

1

|N (v)|+ 1

f (l−1)(v) +
∑

u∈N (v)

f (l−1)(u)

 (50)

For CGADM’s residual propagation:886

f
(l)
CGADM(v) = f (l−1)(v)− 1

|N (v)|
∑

u∈N (v)

f (l−1)(u) (51)

Focusing on the edge (i, j), for standard GNN:887

f
(l)
GNN(i)− f

(l)
GNN(j) =

1

|N (i)|+ 1

f (l−1)(i) +
∑

u∈N (i)

f (l−1)(u)

 (52)

− 1

|N (j)|+ 1

f (l−1)(j) +
∑

u∈N (j)

f (l−1)(u)

 (53)

This averaging operation reduces the difference between adjacent nodes, decreasing the Dirichlet888

energy.889

For CGADM’s residual propagation:890

f
(l)
CGADM(i)− f

(l)
CGADM(j) = f (l−1)(i)− 1

|N (i)|
∑

u∈N (i)

f (l−1)(u) (54)

−

f (l−1)(j)− 1

|N (j)|
∑

u∈N (j)

f (l−1)(u)

 (55)

27



This operation emphasizes the differences between a node and its neighborhood average, preserving891

and potentially amplifying the differences between adjacent nodes, thus maintaining higher Dirichlet892

energy.893

Empirically, as shown in our experiments (Table 11), CGADM maintains significantly higher Dirichlet894

energy compared to standard GNN aggregation, confirming our theoretical analysis.895

T Broader Impact896

This research on Conditional Graph Anomaly Diffusion Model (CGADM) has significant potential897

for positive social impact across multiple domains. By improving the detection of anomalous nodes898

in large-scale graphs, our work can enhance fraud detection systems in financial networks, helping899

protect consumers and institutions from financial crimes. In social networks, it can identify malicious900

actors attempting to spread misinformation or engage in coordinated inauthentic behavior. By901

providing more accurate, efficient anomaly detection, CGADM can contribute to creating safer digital902

environments while minimizing false positives that might otherwise affect legitimate users.903
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